provide an annual average of 76,000 hp (57 MW), significantly more than the Hyperloop requires. Since the peak powers of accelerating and decelerating capsules are up to 3 times the average power, the power architecture includes a battery array at each accelerator, allowing the solar array to provide only the average power needed to run the system. Power from the grid is needed only when solar power is not available. This section details a large linear accelerator, capable of the 300 to 760 mph (480 to 1,220 kph) acceleration at 1g. Smaller accelerators appropriate for urban areas and ascending mountain ranges can be scaled down from this system. The Hyperloop uses a linear induction motor to accelerate and decelerate the capsule. This provides several important benefits over a permanent magnet motor: Lower material cost – the rotor can be a simple aluminum shape, and does not require rare-earth elements. Lighter capsule. Smaller capsule dimensions. The lateral forces exerted by the stator on the rotor though low at 0.9 lbf/ft (13 N/m) are inherently stabilizing. This simplifies the problem of keeping the rotor aligned in the air gap.
